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Kurzfassung

Die molekulare Welt ist ein spannendes Wissenschaftsgebiet. Mit dem Fortschritt der
Technik ist es endlich möglich, die Anordnungen der einzelnen Atome in Molekülen zu
entdecken. Mit diesen Daten können komplexe Systeme wie Viren, Bakterien und Zellen,
die aus Millionen von Atomen bestehen, modelliert werden. Solche Systeme werden oft als
biologische mesoskalige Strukturen bezeichnet und es sind viele Visualisierungstechniken
entstanden, um sie zu modellieren. Dies ist keine leichte Aufgabe, da solche Systeme
sehr komplex sind und viel Berechnungszeit zum Rendern benötigen. Ein wesentlicher
Bestandteil der Visualisierung ist die Kollisionserkennung und -auflösung, da sich Moleküle
auch in der realen Welt nicht überlappen. Wir haben den ”Fast Fixed-Radius Nearest
Neighbors” Algorithmus der von Hoetzlein entworfen wurde, reimplementiert, um alle
kollidierenden Atome zu finden, Kräfte zur Auflösung ihrer Kollision berechnet und auf
die Moleküle angewendet. Um diese Methode zu testen, konstruierten wir ein Modell
einer Lipiddoppelschicht und fanden heraus, dass es möglich war, Kollisionen mit bis zu
vier Millionen Atomen in Echtzeit aufzulösen. Wir haben weitere Verbesserungen unseres
Algorithmus überprüft und sind überzeugt, dass er als effiziente Kollisionserkennung für
mesoskalige Umgebungen verwendet werden kann.
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Abstract

The molecular world is an exciting field of science. Since technology has advanced it is
finally possible to discover the arrangements of the single atoms in molecules. With this
data, complex systems like viruses, bacteria and cells, made out of millions of atoms
can be modeled. Such systems are often called biological mesoscale structures and many
visualization techniques have been developed to model them. This is not an easy task as
such systems are very complex and need a lot of processing time to render. An essential
part of the visualization is the collision detection and resolving as in the real world
molecules do not overlap. We reimplemented the Fast Fixed-Radius Nearest Neighbors
algorithm that was designed by Hoetzlein to find all colliding pairs of atoms, calculated
forces which are then applied on the molecules in order to resolve the overlaps. To test
this method we constructed a model of a lipid bilayer and found that it was able to resolve
collisions with up to four million atoms in real time. We reviewed further improvements
of our algorithm and are positive that it can be used as a efficient collision detection for
mesoscale environments.
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CHAPTER 1
Introduction

Molecules are smaller than the wavelength of light, hence even with light microscopy, it is
not possible to see them. Methods like x-ray crystallography, NMR spectroscopy, electron
microscopy or atomic force microscopy help us to discover the arrangement of atoms
in a molecule [Goo09]. With data collected by these techniques it is possible to model
complex systems, such as viruses, bacteria and cells, made out of millions of molecules
at atomic resolution. Such systems are often called biological mesoscale structures,
because they are bridging the molecular (nanoscale) and the cellular biology. A visual
representation of such models helps scientists to better understand the inner working of
cells and to communicate findings to peers. Such visualizations were traditionally created
by scientific illustrators using 3D modeling tools or are hand drawn, see Figure 1.1. Such
visualizations are cumbersome to create, require vast domain knowledge, and sometimes
lack the ability to interactively explore the mesoscale model.

To overcome these issues CellPACK [JAAA+15] describes the scene on a higher level of
abstraction using so called "recipes". They gather data, mainly from cellular tomography,
and derive a recipe to automatically generate a virtual model. This approach allows a
broad audience from a diverse background to interact and create mesoscale models. The
main drawback of this method is that the model creation takes long, depending on the
complexity of the model, ranging from minutes to several hours. Changing parameters,
like the number of proteins inside a virus, require a recreation of the model, which makes
this method so time consuming.

A more experimental friendly environment could help scientists to communicate new
domain knowledge or could be used for hypothesis validation. Klein et al. present
cellVIEW [KAK+17], a tool which makes it possible to model the biological mesoscale at
atomic resolution while allowing the user to interactively change parameters and explore
the model. They do so by using a novel set of GPU (Graphic Processing Unit) algorithms
that form a base for the fast generation of such structures. To speed up the generation
process they make use of the high parallelism of the GPU that allows thousands of
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1. Introduction

Figure 1.1: (Right) Computer generated hemoglobin, where each atom is distinguishable.
Magnified by 1.000.000 (Left), hand drawn section of a red blood cell, magnified by
5.000.000 [Goo09].

threads to work on a task simultaneously. Klein et al.´s main bottleneck was the collision
detection for molecules. To increase realism, overlapping molecules should be resolved.
They use a brute force method implemented on the GPU, but for the mesoscale structure
of a lipid bilayer issues arise as this method is too slow.

A lipid is a small longish molecule that builds together with other lipids the biggest
structures inside a cell. When they come in contact with water they arrange themselves
into a water impermeable layer that isolates the inside of the cell to its environment. A
lipid bilayer consists of two layers of parallel orientated lipids where the tails of the two
layers face each other. The lipids are oriented normal to the layer [Goo09], see Figure 1.2.
Such structures often consist of millions of atoms. In comparison to proteins, which are
dissolved in water and have lots of empty space around them, lipids are tightly packed
and form a dense layer of molecules. To resolve collisions of so many closely spaced
molecules, a highly specialized algorithm implemented on the GPU, to facilitate its high
parallelism, is needed.

In this work we discuss such an algorithm, namely the Fast Fixed-Radius Nearest Neighbor
(FFRNN) algorithm presented by Hoetzlein [Hoe14]. First we explore other methods
in collision detection generally. Then we look into methods specialized for mesoscale
visualization. We explain the FFRNN algorithm, describe how and why it works and
how we can apply it to our molecule simulation. At the end we discuss and evaluate our
approach and explore further improvements.
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Figure 1.2: A cutout of a lipid bilayer. A single lipid molecule is highlighted in green.
The Lipids are tightly packed and form a dynamic lipid bilayer [Goo09].
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CHAPTER 2
Related Work

Collision detection is a large field of research in computer science. Many different
algorithms exist, each with its own advantages and drawbacks. In this section, we first
describe a selection of collision detection algorithms in Section 2.1 and then describe
other mesoscale visualization tools for molecules and their approach for collision detection
in Section 2.2.

2.1 Collision Detection
The simplest algorithm to find colliding bodies is to check all possible pairs, if they
overlap. This brute force method is not feasible as its complexity is of O(n2) where
n is the number of bodies. To reduce the number of checks, many collision detection
algorithms consist of a phase where collision culling is performed to reduce the number of
pairwise checks. This phase is called broad phase. The broad phase may have produced
false positives, therefore the narrow phase starts, where the pairs of objects in proximity
are checked more closely, if they collide.

A common algorithm for broad phase collision detection is the Sweep and Prune algorithm,
firstly described by Cohen et al. [CLMP95]. For each body, an Axis Aligned Bounding
Box (AABB) is defined. These AABB are projected on the x, y and z axis, resulting in
intervals on these axes, see Figure 2.1. A collision is only possible, if and only if these
intervals are overlapping on all three axes. Cohen et al. used three sorted lists, one
for each axis, containing the endpoints of the projected AABBs, to quickly determine
overlapping AABBs. These lists are sorted using insertion sort. Cohen et al. argued that
for environments, where the coherence is preserved, this sorting is possible in O(n) time,
because insertion sort works well for previously sorted lists. In addition to sorting, the
change of collision status for the intervals needs to be updated for each axis in each time
frame. This is also possible in linear time due to coherence, which results in an overall
complexity of O(n + s) for this algorithm, where n is the number of bodies and s is the
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2. Related Work

Figure 2.1: Axis Aligned Bounding Boxes and their intervals on a single axis. b: begin of
bounding box, e: end of the bounding box. The begin of the bounding box four overlaps
with the end of bounding box three. Such an overlap is registered in a list for this axis
[CLMP95].

number of changes of collision status. This broad phase results in a list of candidate
bodies, which may overlap.

More recently, Liu et al. presents a parallel version of the Sweep and Prune algorithm
[LHLK10]. They perform Sweep and Prune simultaneously for many objects using the
many threads of the GPU. They also do a Principle Component Analysis (PCA) to find
the ideal axis to sweep.

Other collision detection algorithms rely on space partitioning, where the space is
subdivided into smaller regions. Bodies in different regions can be pruned from the list of
possibly colliding objects. The main structures used for spatial subdivision are Uniform
Grid, Quadtree, Kd-Tree and BSP Tree.

Collision detection is often coupled with an appropriate response to the collision. This
response is dependent on the general environment, for instance physical simulation, see
Baraff et al. [Bar92], or molecular modeling, see Turk [Tur89]. For a physical simulation
of colliding bodies, exact contact determination of those bodies is needed to compute an
adequate response. This is where the narrow phase starts. Cohen et al.[CLMP95] use
in their I − Collide system the Lin-Canny collision detection algorithm, which tracks
closest points between pairs of convex polytopes [Lin93]. To find those closest points,
they use Voronoi regions that partition the space around polytopes.

2.2 Visualization Tools for Mesoscale Environments

The mesoscale represents an intermediate scale between molecular (nanoscale) and cellular
biology. On the nanoscale, proteins, nucleic acids, lipids and polysaccharides are built
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out of atoms and on the mesoscale, these molecules are assembled into more complex
sub-cellular models. The mesoscale representation can help scientist to better understand
the inner working of cells.

Mesoscale models are enormous, consisting of millions of atoms. Thus, they require
specialized, highly-optimized methods to be rendered efficiently. Klein et al. [KAK+17]
present the first approach of modeling the mesoscale within an interactive visual environ-
ment. According to Klein et al. [KAK+17], the workflow for modeling scenes consists of
three basic steps:

1. Scene organization

2. Recipe definition

3. Population of the model

The first step defines compartments described as 3D meshes. The second step compiles
the recipe that describes, which molecules make up which compartment. It also describes
interactions with other molecules and constraints to their positions. The third step is
the computational expensive part, where, according to the recipe, the scene is populated
with molecules and fibrous structures.

To populate the membrane with lipids, an extension to the Wang tiling algorithm [FL05]
is used to prevent visible repetition patterns, see Figure 2.2. First, four small patches, in
form of a diamond, are extracted from the input texture. The input texture they use for
biological membranes is a planar bilayer consisting of numerous, closely positioned lipids
which do not overlap. The patches are combined to form a larger diamond patch and
a rectangular patch is extracted from the center of the larger patch. This rectangular
patch results in overlapping lipids which are detected and removed. The remaining holes
are filled with non-colliding lipids. The collision detection uses two proxy geometries.
The higher level geometry is the bounding sphere of the molecule and is used to detect
potential collisions. The lower level geometry is made of a small number of spheres that
approximates a molecule, see Figure 2.3. The spheres are calculated with a GPU-based
K-means clustering algorithm [FRCC08]. The lower level geometry is used to verify
collisions and to calculate reaction forces to resolve collisions. The calculation of the forces
is loosely based on standard rigid body dynamics [Bar97]. For each pair of overlapping
molecules, the overlapping spheres of the proxy geometries are used to calculate reaction
forces. These forces are accumulated for each molecule as a linear and angular force.
When all molecules are processed, the forces determine the new positions. Thereby it can
happen that the molecules leave their assigned compartment. A springforce that pulls
the molecule back to its position is applied to prevent that. The collision detection and
force calculation is computed on the GPU.

A very complex part of a cell is the DNA. DNA has been traditionally modeled with
random walks, which was slow because of the sequential nature of the algorithm [AJ11].
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Figure 2.2: Wang tiling algorithm. (a) Extraction from input texture. (b) Combination
to a larger texture and extraction of a rectangular texture. (c) Deletion of overlapping
lipids. (d) Holes filling [KAK+17]

.

A random walk produces a set of points where each point is dependent on its predecessor.
Klein et al. [KMA+19] propose a new approach to model such a structure in parallel on
the GPU, which significantly speeds up the process. They first used a random walk with
a large step size, to generate a coarse-grained backbone of the fibrous structure. With a
parallel implementation of the midpoint displacement algorithm [Man82] [FFC82] they
generate a more fine grained structure. The midpoint displacement method takes two
spheres and produces a midpoint, which is displaced perpendicular to the line segment
connecting the two initial spheres by a random amount. This process is repeated until a
desired level of detail is reached. In each iteration the displacement magnitude is reduced.
To not slow down the process, overlaps between spheres are disregarded. Therefore, a
collision detection and resolving algorithm is applied to solve overlapping spheres after
the structure is generated. Klein et al. use a fixed nearest neighbor search as described by
Hoetzlein [Hoe14] to find overlapping spheres. This is the same algorithm as used in this
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2.2. Visualization Tools for Mesoscale Environments

Figure 2.3: (a) Proxy geometry generated by the K-means clustering algorithm, used for
collision detection and resolving. 17 Spheres were used to approximate the molecules.
Grey are static molecules, red are colliding molecules and green are not colliding molecules.
(b) Corresponding ingredients in atomic resolution [KAK+17].

work and is further described in Section 3. When overlapping pairs of spheres are found,
a combination of a repulsion and a recover force is applied to resolve the collision. The
repulsion force pushes the spheres apart while the recover force pulls them back in such
a way that it adheres structural constraints. DNA is usually enclosed inside a membrane.
During the collision resolving step, spheres can leave the enclosure. To prevent this,
another force is applied that pushes the spheres back inside their compartment. This
process is repeated until all collisions and constrains are resolved or a stop criterion is
reached. To model the final DNA, several processing steps are applied on the spheres.
Only then each sphere is replaced with a more detailed DNA building block.

Nguyen et al. [NSK+21] present a new technique to construct scientifically accurate
mesoscale models. They use a rule-based modeling strategy that can utilize evidence
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collected from microscopy data. Rules can also be specified by the modeler using his
domain knowledge. The creation of a model begins by processing the rules sequentially.
While the system populates the scene with molecules, a collision handling algorithm
prohibits overlaps with other molecules. Nguyen et al. used an octree with four levels of
subdivision to speed up the process. For every element a bounding sphere is assigned,
that can be scaled by the user to better approximate the object. When a new candidate
element is created, all leaf nodes of the octree, that intersect with the bounding sphere
of the element, are fetched. If there are no collisions with the fetched elements, the
candidate element is created. Otherwise the element is not created. This process can
result in rules that never finish. Therefore, a counter is implemented that increments
for each consecutive detected collision. If this counter reaches a threshold, the rule
terminates.

A different approach is used by Gardner et al. [GAF+21] [GAB+18] to visualize mesoscale
environments. Instead of 3D models they use 2D sprites that can be interactively added.
To simulate a 3D world they use two background layers that are also populated with
molecules, but in a darker shade. For collision detection they use Box2D, a well known
2D physics engine for games [Cat21]. Figure 2.4 shows CellPAINT and its user interface.

Figure 2.4: CellPAINT and its user interface. In this scene a simple eukaryotic cell,
blood plasma and a coronavirus can be seen. The user creates a new ingredient based on
atome coordinates from a Protein Data Bank [GAF+21].
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CHAPTER 3
Methods

The main subject of this thesis is the real time collision detection and resolving of rigid
bodies in the context of molecules. Collision detection of millions of bodies was previously
solved with the FFRNN algorithm by Hoetzlein [Hoe14] on the GPU. The Fixed-Radius
Nearest Neighbors problem is well known in computer science and has long been studied
[Ben75]. For this bachelor thesis we consider the problem only in 3D Euclidean space.
Given a set of Points P in 3D and a radius r, the Fixed-Radius Nearest Neighbors
problem is defined as finding a set of all neighbors N ⊆ P of a given query point q ∈ P
which are within the distance r. In this chapter we explain the FFRNN algorithm in
detail and then we show how it is applied on a collision detection for molecules.

3.1 Fast Fixed-Radius Nearest Neighbors
Hoetzlein builds a uniform grid to partition the space instead of using brute force to
search all possible pairs. Then the particles are placed into bins (cells) according to their
spatial position. As the bin size is chosen in a way that it is at least as big or bigger than
the radius, only neighboring bins need to be searched. This reduces the complexity to
O(k ∗ N) where k is the number of particles in neighboring cells and N is the number of
all particles. To find all neighbors of a particle, we query all particles that are in the
same bin and all particles that are in neighboring bins. Such queries are slow on the GPU
because these particles are laid out in memory randomly and would result in scattered
reads, see Figure 3.1. To have ideal and fast coherent reads it is necessary to sort the
particles by bins. Hoetzlein uses Counting Sort as sorting algorithm.

Counting Sort first creates a helper array by counting how many particles are in each bin
and then computes a Prefix Sum of this array. A Prefix Sum of an array A is also an
array S where each entry S(x) is the sum of the entry A(x) and all previous entries of
A(< x), see Figure 3.2. This counting of particles by bin and the calculation of the prefix
sum can be done very efficiently in parallel on the GPU, see Section 4. Now sorting is

11
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Figure 3.1: This Figure shows a grid and the corresponding binning process. First
without sorting the points resulting in slow scattered reads, then with sorting by bins
resulting in fast coherent reads. The search radius should not be greater then the cell
size, otherwise more cells need to be searched.

only a matter of binning the particles into the correct bin. With the Prefix Sum array it
is known where to put the particles in memory. After a particle is binned, the Prefix
Sum array is updated by decrementing the corresponding entry. Note that the order
of particles inside a bin is irrelevant. This binning process can also be implemented in
parallel on the GPU, see Section 4. Now, to get all neighbors of a query point q of P the
points of the bin containing q and all points of the neighboring bins are queried, then
particles that are not within the radius are discarded.

Figure 3.2: Prefix Sum of an array with random values. A is the initial array, S is the
array with the Prefix Sum result.

3.2 Fast Fixed-Radius Nearest Neighbors on Molecules
The FFRNN can be used in many different applications. Hoetzlein [Hoe14] used it for a
Smoothed Particle Hydrodynamics simulation. We show how FFRNN is used to detect
and solve collisions of molecules.

In this application we implement a Rigid Body Simulation. That means bodies are not

12



3.2. Fast Fixed-Radius Nearest Neighbors on Molecules

deformable. The aim is to detect overlapping bodies. Therefore the radius, in which
the search happens, should be the radius of the bounding sphere of the bodies. The
FFRNN algorithm works, as its name suggests, only on a fixed radius. Nevertheless,
molecules come in many different shapes and size. Defining a single large bounding
sphere for all the different molecules would be impractical, because smaller molecules
would be overestimated, for concave shaped molecules a sphere is not descriptive enough
and large molecules would be underestimated, see Figure 3.3. The solution to this is to
go down on the atomistic level. In the marion framework, which is used for this thesis,
molecules are made of atoms, which are represented as spheres of the same size. Defining
the search radius as the radius of the atoms, gives us an exact collision detection that
detects overlapping atoms. However, atoms belonging to the same molecule do always
overlap and are allowed to do so. These "collisions" must be excluded from the collision
detection, see Figure 3.4.

Figure 3.3: The problem of same sized bounding spheres for different molecules. (a) The
bounding sphere underestimates the molecule, (b) the bounding sphere overestimates the
molecule, (c) the bounding sphere is not descriptive for concavely shaped molecules.

Figure 3.4: A single molecule. The overlapping of atoms within a molecule is allowed.
These overlaps are disregarded by the algorithm.

In the same step, when we do the neighbor search, we also calculate the forces that push
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the molecules apart. For each colliding pair of atoms we calculate a linear force, that
moves the molecules apart and an angular force that rotates the molecules apart. These
calculations are loosely based on rigid body dynamics as described by Baraff [Bar92] and
are described in more detail in Section 4. The calculated forces are accumulated for each
molecule. After the forces of all colliding pairs are calculated, the molecules are moved
and rotated according to these forces.

As some molecules have a specific place inside a scene, e.g. lipids are arranged along the
hull on a sphere pointing into the center of the sphere, they are not allowed to rotate or
move across the scene unregulated. Therefore, we calculate a spring force and a spring
torque for each molecule, that depends on its position and orientation. Similar to the
collision resolving process we calculate an offset and a rotation out of these spring forces
and move and rotate the molecules accordingly. In this way the molecules move back and
forth over several iterations until a resting position is found or a stop criterion is reached.

The scene for testing the application arranges molecules along the hull of a sphere into
two layers, pointing towards the center, see Figure 3.5. The editor is described in Figure
3.6. The number of molecules and the radius of the sphere can be changed independently
and interactively using an editor menu. As the surface of a sphere is given by its radius,
the number of molecules that fit on the surface is limited. If the number of molecules
exceeds the available space, the algorithm will never find a resting position for each
molecule. The user is responsible to find a suitable combination of number of molecules
and radius of the sphere by trial and error. The user does not get a warning to indicate
impossible parameter settings.

14
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Figure 3.5: Screenshoot of the application. On the main screen the lipid bilayer model
can be seen, consisting of 2.000.000 atoms. A green molecule indicates a non colliding
state, a red molecule indicates a colliding state. The different shades of color have no
meaning.
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Figure 3.6: Screenshoot of the application´s editor. Various parameters can be adjusted
in real time e.g. the number of molecules, the radius of the lipid bilayer sphere, integration
step size for each type of force, grid size etc. It is also possible to save parameter settings
as presets to load the settings in another session.
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CHAPTER 4
Implementation Details

In this chapter we describe the implementation of the application in more detail. First,
we describe, how molecules are generated and how to get the position of their atoms.
Then we explain, how the grid is created and populated with atoms. Finally, we show
how we calculate forces and torques and how they result in a displacement of molecules.
Figure 4.1 shows an overview of the algorithm pipeline.

4.1 Molecule Placement
As mentioned in Chapter 3, molecules are made of atoms. Scenes can contain millions
of molecules. Therefore GPU instancing is used to accelerate the population process.
GPU instancing means that a single drawcall is used to render multiple similar objects,
which reduces the overhead between CPU and GPU communication. As molecules are
only a collection of differently arranged atoms, it is possible to define each molecule type
once and send this information to the GPU. In addition, the molecules´ positions and
orientations in global space are also sent to the GPU, so the GPU knows where to render
the molecules. To place the molecules uniformly on a sphere, a sampling algorithm is
used. Sampling a sphere is not trivial, as simple sampling can result in points clustered
around the poles of the sphere, see Figure 4.2. For example, a simple sampling method is
using uniformly distributed polar coordinates and then transforming them to Cartesian
coordinates as seen in Algorithm 4.1. This method does not produce uniform samples on
a sphere.

Distributing the molecules uniformly around the sphere is important, because the
molecules should be as tightly packed as possible. Having clusters at the poles and
a sparse distribution around the equator decreases the maximal number of molecules. A
better way to sample a sphere is with the inversion method and polar coordinates. This
method warps the polar coordinates, using the inverse of the cumulative distribution
function (cdf) of ϕ (the polar angle) to produce a uniform distribution after transforming
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4. Implementation Details

Figure 4.1: Overview of algorithm pipeline. First the molecules are placed inside the
scene. If a collision is detected, reaction forces/torques are calculated per atom. If
molecules are not in place, spring forces/torques are calculated per molecule. These forces
are summed up so they can act per molecule. According to the forces the molecules are
displaced. If no molecule is colliding and all molecules are placed correctly, the algorithm
found a resting position.

to Cartesian coordinates, see Algorithm 4.2. The algorithms 4.1 and 4.2 give coordinates
for the unit sphere. To create a sphere of any size, the coordinates must be multiplied by
the desired radius.

The positions of all atoms of a molecule are easily calculated by querying the molecule
type, rotating its atom positions by the molecule’s orientation and adding the molecule’s
position in global space.

18



4.2. Grid Creation

Figure 4.2: Sampling spheres. (a) A uniformly sampled sphere with the inversion method
described in Algorithm 4.2. (b) A sphere sampled with the simple method described in
Algorithm 4.1 with clusters around the poles.

Algorithm 4.1: Simple sampling resulting in clustered points around poles
Input: Two random floats r1 r2 between [0, 1)
Output: A position Vector p⃗ ∈ R3 in Cartesian coordinates
// uniformly distributed polar coordinates

1 θ = 2 ∗ π ∗ r1;
2 ϕ = π ∗ r2;
3 px = sin(ϕ) ∗ cos(θ);
4 py = sin(ϕ) ∗ sin(θ);
5 pz = cos(ϕ);
6 return p⃗;

4.2 Grid Creation

The uniform grid has to be big enough that every molecule is inside, otherwise the collision
detection will not work properly as the molecules outside the grid are disregarded. The
grid is described by the cell size as a float and a 3D integer vector that defines how many
cells there are for each axis. The 3D grid can be flattened to a 1D array, where each
entry represents a bin (cell) that counts the number of atoms. The size of this array can
be calculated by the extent of the grid. The array size has to be the extent in x direction
multiplied by the extent in y direction multiplied by the extent in z direction. Given a
point in 3D it is possible to find its position in the array by first calculating its index on
the x, y and z axis and then mapping these positions to 1D, see Algorithm 4.3. Now it
is possible to populate the grid and increase the counter of a cell for each atom. This
can be done in parallel on the GPU. To prohibit concurrent access on a shared memory
atomic addition is used to update the cell counter. As the process is executed in parallel
by multiple threads, without atomic operations it could happen that two threads read
the same value simultaneously, increment it and write it back to memory, resulting in
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Algorithm 4.2: Inversion method sampling resulting in uniformly sampled
points

Input: Two random floats r1 r2 between [0, 1)
Output: A position Vector p⃗ ∈ R3 in Cartesian coordinates
// warped polar coordinates

1 θ = 2 ∗ π ∗ r1;
2 ϕ = acos(2 ∗ r2 − 1);
3 px = sin(ϕ) ∗ cos(θ);
4 py = sin(ϕ) ∗ sin(θ);
5 pz = cos(ϕ);
6 return p⃗;

one lost operation and a wrong result. This is also known as the lost update problem.
Atomic operations lock a value so no other thread can access it, performs its operation
and writes the result back into memory and only then the value is freed again.

Algorithm 4.3: Calculate grid index of flattened 3D grid
Input: Atom position in 3D p⃗
Output: Atom’s cell index in flattened array index

1 xgridMax = cellsize;
2 ygridMax = cellsize;
3 zgridMax = cellsize;
// Calculate index on each axis

4 xindex = ⌊(xgridMax + px)/cellsize⌋;
5 yindex = ⌊(ygridMax + py)/cellsize⌋;
6 zindex = ⌊(zgridMax + pz)/cellsize⌋;
7 index = xindex + yindex ∗ gridSizex + zindex ∗ gridSizex ∗ gridSizey;
// Map to 1D

8 return index;

The cell size is an important parameter for this algorithm. Choosing the cell size too
big leads to too many atoms inside a single cell, which means the neighbor search takes
longer. On the other hand, if choosing the cell size too small the search radius would span
over multiple cells resulting in more cells needed to be searched. The grid dimension and
cell size can be changed interactively, which makes it a lot easier to find optimal values.
In this application a cell size of the size of a single atom results in the best performance.

After the grid is populated, the atoms are sorted by bins, with the help of a prefix sum
array as mention in Section 3.1. There are many algorithms that efficiently compute a
prefix sum on the GPU. Explaining such algorithms is rather complex and is not the
focus of this work. The reader is referred to the book GPU Gems 3 [HSO07].
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4.3. Calculating Forces

4.3 Calculating Forces
When the algorithm detects a colliding pair of atoms we compute a linear force and
a torque. These forces are written inside Shader Storage Buffers. All the calculations
happen on the GPU. We refer to the atom that is currently processed as left hand side
atom (LHSA) and the atom, with which it collides, as right hand side atom (RHSA),
see Algorithm 4.4. The direction of the force is the normalized difference between the
position vector of LHSA and RHSA. As both atoms are spheres this direction corresponds
exactly to the contact point of both atoms. To get the strength of the force we calculate
the reciprocal of the sum of the squared distance between LHSA and RHSA and the
squared local position of LHSA.

strenght = 1
squaredDistance + squaredLocalPositionLHSA

(4.1)

That means the strength decreases when LHSA and RHSA slightly overlap, because of
the reciprocal of the squared distance and it also decreases when the LHSA is farther
away from the center of the molecule, because of the reciprocal of the squared relative
position, see Figure 4.3. On the other hand the strength increases when LHSA and
RHSA overlap more and when LHSA is near the center of the molecule. We multiply the
normalized direction with this calculated force and save it for the LHSA into the force
buffer. This calculation is a mere heuristic to approximate real world physics.

The reason we want to decrease the strength with the distance to the molecule’s center is,
that we also want to rotate the molecule. Sometimes it is much more efficient to rotate
molecules out of a collision state instead of pushing them away. It is also more physically
plausible to introduce rotational forces. Therefore, we also calculate torques for each
atom. A torque can be seen as the rotational equivalent of a linear force. Intuitively
a torque is the resulting rotation of a force acting on a lever, it is represented as an
unnormalized 3D vector. It is computed by the cross product of the position vector
and the force vector. In this application the position vector is the relative position of
the LHSA as this is the vector that points from the origin of the molecule to the atom
where the force is applied. The force vector is the normalized difference between the
position vector of LHSA and RHSA (direction from RHSA to LHSA). The cross product
gives us a vector that is perpendicular to those two vectors. The torque increases with
the distance of LHSA to the molecule´s center, according to the principle of leverage:
the greater the lever the greater the torque. The normalized force only influences the
torque’s axis as the force´s magnitude is always one. At the end we save the torque for
this LHSA into the torque buffer.

After we have calculated the linear forces and torques for each atom of each molecule we
can proceed. As mentioned in Chapter 3 we want to hold the molecules in a specific place
and orientation. They are allowed to move and rotate, but not too far. We also want to
define how far they are allowed to move and rotate. For this we calculate a spring force
and a spring torque for each molecule that pulls the molecule back to its place, similar to
a spring, see Algorithm 4.5. As we want to model a lipid bilayer in the form of a sphere
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Figure 4.3: Variables visualized. We see two colliding molecules. The big purple sphere
represents the molecules position in global space. The dark blue sphere represents the
atom that is currently processed (LHSA) and the light green sphere represents the atom
with which it collides (RHSA).

as described in Chapter 1, we know the radius of the sphere and therefore the required
distance of the molecule to the center. If a molecule is outside the sphere, we calculate a
vector that points from the molecule position to the center of the sphere. If a molecule is
inside the sphere, we calculate a vector that points from the center of the sphere to the
molecule. This vector is then saved into the spring force buffer.

Calculating the spring torque is not as straight forward as calculating linear forces. To
form the lipid bilayer, we want the molecule’s up vector to point to the center of the
sphere. The sphere’s center lies in the origin of the coordinate system. In this application
the up vector of a molecule is defined as u⃗p = (0, 1, 0). We need a rotation that rotates
the current orientation to the target orientation. The current orientation is the up vector
rotated by the molecules rotation. The target orientation is the direction vector that
points from the center of the sphere to the molecule, which is equivalent to the normalized
position vector of the molecule. To formulate it like a lever/force-relationship we can
interpret the current orientation as a position vector and the target orientation as a force
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Algorithm 4.4: Reaction Force Calculation
Input: List of atoms, Grid
Output: Force and torque that act on an atom

1 for each atom ⃗LHSA in list in parallel do
2 for each neighboring atom ⃗RHSA in Grid in sequence do
3 ⃗direction = normalize( ⃗LHSA − ⃗RHSA);
4 strenght = 1

squaredDistance+squaredLocalP ositionLHSA ;
5 ⃗linearForce = direction ∗ strenght ∗ integrationStepForce;
6 ⃗torque = cross(localPositionLHSA, direction) ∗ integrationStepTorque;
7 end
8 end
9 return force and torque;

that acts onto the position vector pushing it in the target orientation. We calculate
the rotation from current orientation to the target orientation as axis angle. The axis
is calculated by taking the normalized cross product from the current orientation and
the target orientation. The angle is calculated by taking the arcus cosinus from the dot
product of the current orientation and the target orientation. If the angle of this rotation
is smaller than a threshold, it means the molecule was already in the desired orientation
and we add no torque to the spring torque buffer. Otherwise we take the axis of the
rotation and multiply it with the angle, this gives us the torque that is needed to rotate
the molecule to the desired orientation.

In addition we scale all the forces and torques, we just described beforehand, with a
constant factor. This factor represents the integration step size and is for each type of
force different and adjustable by the user. A bigger step size means the corresponding
forces have a bigger influence on the displacement of the molecules in each frame. The
step size greatly influences the collision resolving, as large values would lead to a farther
displacement, and eventually push molecules into one another. On the other hand, a
small value reduces the displacement and the resolving of collisions takes additional
frames. Generally it is recommended that the integration step size should be small for a
scene with a very dense distribution of molecules e.g. lipid bilayer, and large for scene
with a sparse distribution of molecules e.g. cytoplasm. Making this factor adjustable
gives more control to the user and an adequate preset is also available.

As we have calculated the linear forces and torques for each atom, we need to accumulate
them for each molecule. We also add the spring forces and spring torques to the same
buffers. Because we do the operations also in parallel on the GPU we need to make sure
the additions do not operate concurrently on the same value. Therefore, we also use atomic
operations to add up the forces and torques of each molecule. Adding up torques first
seems odd as we add up axes, but because all torques pivot around the molecules center,
which is also its center of gravity, we can simply add them up [Bar97]. Unfortunately,
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Algorithm 4.5: springForce Calculation
Input: List of Molecules
Output: Spring Force and Spring Torque that act on a molecule

1 for each Molecule ⃗position in list in parallel do
// Calculate spring force

2 epsilon1 = leeway for the molecule´s position;
3 epsilon2 = leeway for the molecule´s orientation;
4 radius = radius of the sphere;
5 distance = distance from center of the sphere to the molecule;
6 if distance > radius + epsilon1 then
7 ⃗springForce = − ⃗position ∗ IntegretionstepSpringForce;
8 else if distance < radius − epsilon1 then
9 ⃗springForce = ⃗position ∗ IntegretionstepSpringForce;

// Calculate spring torque
10 currentOrientation = u⃗p rotated by molecule´s rotation;
11 targetOrientation = normalize( ⃗position);
12 ⃗torqueAxis = normalize(cross(targetOrientation, currentOrientation));
13 angle = acos(dot(currentOrientation, targetOrientation));
14 if (180/π) ∗ angle > epsilon2 then
15 ⃗springTorque = torqueAxis ∗ angle ∗ IntegrationstepSpringTorque;
16 end
17 return springForce and springTorque;

these forces and torques come in floats and at the time of writing this thesis only
Nvidia cards support atomic operation on floats using the GL_NV_shader_atomic_float
extension [CWB12]. We take the downside and go with the support of only Nvidia
graphics cards users. When all forces and torques are added up, we can continue and
apply the forces and torques on the molecules.

The linear force is just added to the position of the molecule. The torque must first be
converted to a quaternion, because the current rotation of the molecule is also expressed
as a quaternion. To rotate the molecule we need to multiply the quaternion converted
from the torque with the quaternion representing the current rotation of the molecule.
After all forces and torques are applied, one iteration is done.
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CHAPTER 5
Evaluation

In this chapter we evaluate the algorithm’s efficiency by comparing its execution time
to a brute force implementation. The FFRNN algorithm has a complexity of O(k ∗ N)
where N is the number of particles and k is the number of particles in neighboring cells.
Domain specific costs need to be added, for instance the computation of forces, the
accumulation of these forces for each molecule and the application of these forces on the
molecules. To provide a ground of comparison, a brute force algorithm was implemented
on the GPU that uses the same collision resolving calculations but to find colliding pairs
it checks all other atoms in the scene. Such an algorithm has a complexity of O(N2).
Figure 5.1 shows the difference in execution time on a semi-y-log graph, where the y axis
is logarithmic and the x axis is linear.

In Table 5.1 the exact times the algorithm needs for one execution and the corresponding
number of atoms are listed. For 100.000 atoms upwards the brute force algorithm can
not be considered real time anymore, as the time to compute one execution takes already
280 ms. 280 ms corresponds to a frame rate of 3.5 Frames Per Second (FPS). It can be
seen that the FFRNN algorithm is far more performant than the brute force algorithm.

Atoms FFRNN Brute Force on GPU
50 000 9 ms 61 ms
100 000 10 ms 280 ms
200 000 11 ms 977 ms
400 000 16 ms 4.530 ms
1 000 000 28 ms 25.392 ms
2 000 000 44 ms 102.604 ms
4 000 000 78 ms 599.236 ms

Table 5.1: The table shows the execution time of the FFRNN and brute force algorithm.
At 100.000 atoms the brute force algorithm can not be considered real time anymore.
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Figure 5.1: Comparison between the FFRNN and the brute force algorithm. It can be
seen that the brute force algorithm increases quadratically and the FFRNN linearly.
Tested on an Nvidia GeForce GTX 970.

To take a closer look, the execution time of each compute shader is measured, see
Table 5.2. These times were measured with 3.000.000 atoms inside the scene on an Nvidia
Geforce GTX 970. It can be seen that the prefix sum and the sorting of the atoms only
take little time while most of the time is needed for the collision detection. Note that
the collision detection includes also the computation of the linear force and torque as
described in Section 4.3.
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Steps time
Insert Atoms 1 ms
Prefix Sum 8 ms
Sort Particles 3 ms
Sum 12 ms Preprocessing Steps
Detect Collisions 40 ms
Calculate Spring Force 0 ms
Sum Forces 7 ms
Apply Forces 1 ms
Sum 48 ms One iteration

Table 5.2: Execution times for each step of the FFRNN algorithm for 3.000.000 atoms
on an Nvidia Geforce GTX 970.
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CHAPTER 6
Discussion and Future Work

In this chapter we address diverse shortcomings of our work and how they can be solved
in the future. First we look into the upper limit of atoms inside a scene and how we can
increase that number. Then we investigate the algorithm for opportunities to improve its
performance. One of the criteria of this application is that it needs to be in real time.
With 4.000.000 atoms the algorithm needs 78 ms for a single iteration. This corresponds
to a frame rate of around 13 FPS, which is arguably on the lower end of a real time
application. But the collision detection is not the only process in the application that
needs processing time. Rendering and shading of such a high number of bodies decreases
the FPS even further. On the other hand, when all the collisions are resolved, the
algorithm stops and frees a lot of processing time, that means FPS drops would occur
only shortly at the start of the application. Nevertheless, managing an increasing number
of atoms inside a scene is still a valuable endeavor.

6.1 Proxy Geometry with K-Means Clustering

As described in Chapter 2, Klein et al. use a low level proxy geometry constructed
with a K-means algorithm that approximates the geometry of a molecule with fewer but
bigger spheres, see Figure 2.3 [KAK+17] [FRCC08]. This proxy geometry overestimates
the real geometry only a little and is not noticeable for the common user. It is still
possible to render the scene on the atomic level, but for the collision detection we could
use this proxy geometry. Klein et al. use only 17 spheres to approximate a single
molecule. Especially for large molecules consisting of thousands of atoms this would
mean a significant performance boost. The problem which arises with this approach is
that the spheres of the proxy geometry differ in size for differently sized molecules. Yet
the FFRNN algorithm only works on spheres of the same size and some modifications
are needed to make different sized spheres possible. One problem is that the cell size
needs to be adjusted as bigger spheres could extent over several cells and not just the
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neighboring ones. Also the radius, in which the neighbor search happens, needs to account
for differently sized spheres. These problems can surely be solved but are left for future
work.

6.2 Slow Atomic Operations
In Table 5.2 row seven, we see that adding up forces takes seven ms. This is rather
long and can be expected to increase, when the number of atoms per molecule increases,
as more threads want to write concurrently into one position in memory. To prevent
lost updates, we use atomic additions. Atomic additions prevent lost updates, but also
slow down the computation the more threads want to access a value concurrently. In
our case we accumulate the forces of each atom of a molecule and write it in one place.
Hence, the number of threads that want to concurrently access the same value, is as big
as the number of atoms in a molecule. Generally, molecules can have thousands of atoms
meaning using atomic operations is not a feasible way for some applications. Another
downside of using atomic operations is that it uses the GL_NV_shader_atomic_float
extension [CWB12] that, at the time of writing this thesis, only Nvidia graphics cards
support. Finding another approach to accumulate the forces that act on a molecule could
increase performance and also provide support for a larger audience. It should be noted
that atomic operations are not necessarily slow, we used them in the grid population
process described in Section 4.2 too. But in the grid creation process, the number of
concurrently accessed values is small, because we accumulate the number of atoms inside
a cell and this number is also small.
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CHAPTER 7
Conclusion

We discussed the FFRNN algorithm and built a collision detection and resolving algorithm
on top of it that works for mesoscale environments. With our method we are able to
compute and resolve overlaps of molecules on an atomic level with millions of atoms in a
physically plausible way. We utilize the high parallelism of the GPU to detect colliding
pairs of atoms and calculate forces that efficiently resolve collisions and also provides
means to preserve molecules’ position and orientation to an extend.

To evaluate our approach we implemented a simple brute force algorithm to provide a
ground of comparison with other algorithms. Our method outperforms the brute force
approach by several orders of magnitude. With the application that resulted of this work
it is possible to construct test environments interactively. We are able to load different
molecules and arrange them into a sphere similar to a lipid bilayer. To populate the outer
hull of the sphere we use the inversion method to uniformly distribute the molecules.
Thereby we reach a very dense distribution that provides a good starting point for our
method.

The processing time of the algorithm increases linearly with increasing number of atoms.
At some point the algorithm takes too long to process all atoms of a large scene. We
discussed a way to improve the algorithm´s performance further by introducing proxy
geometry that has all ready been implemented by Klein et al. [KAK+17].

Our method is fast and resolves collisions correctly. Further development can increase
performance and may eliminate dependencies on Nvidia graphics cards. Overall we
showed that our method is applicable in mesoscale scenarios and can be expected to
perform very well on large scenes.
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